En savoir plus

Notre utilisation de cookies

« Cookies » désigne un ensemble d’informations déposées dans le terminal de l’utilisateur lorsque celui-ci navigue sur un site web. Il s’agit d’un fichier contenant notamment un identifiant sous forme de numéro, le nom du serveur qui l’a déposé et éventuellement une date d’expiration. Grâce aux cookies, des informations sur votre visite, notamment votre langue de prédilection et d'autres paramètres, sont enregistrées sur le site web. Cela peut faciliter votre visite suivante sur ce site et renforcer l'utilité de ce dernier pour vous.

Afin d’améliorer votre expérience, nous utilisons des cookies pour conserver certaines informations de connexion et fournir une navigation sûre, collecter des statistiques en vue d’optimiser les fonctionnalités du site. Afin de voir précisément tous les cookies que nous utilisons, nous vous invitons à télécharger « Ghostery », une extension gratuite pour navigateurs permettant de les détecter et, dans certains cas, de les bloquer.

Ghostery est disponible gratuitement à cette adresse : https://www.ghostery.com/fr/products/

Vous pouvez également consulter le site de la CNIL afin d’apprendre à paramétrer votre navigateur pour contrôler les dépôts de cookies sur votre terminal.

S’agissant des cookies publicitaires déposés par des tiers, vous pouvez également vous connecter au site http://www.youronlinechoices.com/fr/controler-ses-cookies/, proposé par les professionnels de la publicité digitale regroupés au sein de l’association européenne EDAA (European Digital Advertising Alliance). Vous pourrez ainsi refuser ou accepter les cookies utilisés par les adhérents de l'EDAA.

Il est par ailleurs possible de s’opposer à certains cookies tiers directement auprès des éditeurs :

Catégorie de cookie

Moyens de désactivation

Cookies analytiques et de performance

Realytics
Google Analytics
Spoteffects
Optimizely

Cookies de ciblage ou publicitaires

DoubleClick
Mediarithmics

Les différents types de cookies pouvant être utilisés sur nos sites internet sont les suivants :

Cookies obligatoires

Cookies fonctionnels

Cookies sociaux et publicitaires

Ces cookies sont nécessaires au bon fonctionnement du site, ils ne peuvent pas être désactivés. Ils nous sont utiles pour vous fournir une connexion sécuritaire et assurer la disponibilité a minima de notre site internet.

Ces cookies nous permettent d’analyser l’utilisation du site afin de pouvoir en mesurer et en améliorer la performance. Ils nous permettent par exemple de conserver vos informations de connexion et d’afficher de façon plus cohérente les différents modules de notre site.

Ces cookies sont utilisés par des agences de publicité (par exemple Google) et par des réseaux sociaux (par exemple LinkedIn et Facebook) et autorisent notamment le partage des pages sur les réseaux sociaux, la publication de commentaires, la diffusion (sur notre site ou non) de publicités adaptées à vos centres d’intérêt.

Sur nos CMS EZPublish, il s’agit des cookies sessions CAS et PHP et du cookie New Relic pour le monitoring (IP, délais de réponse).

Ces cookies sont supprimés à la fin de la session (déconnexion ou fermeture du navigateur)

Sur nos CMS EZPublish, il s’agit du cookie XiTi pour la mesure d’audience. La société AT Internet est notre sous-traitant et conserve les informations (IP, date et heure de connexion, durée de connexion, pages consultées) 6 mois.

Sur nos CMS EZPublish, il n’y a pas de cookie de ce type.

Pour obtenir plus d’informations concernant les cookies que nous utilisons, vous pouvez vous adresser au Déléguée Informatique et Libertés de l’INRA par email à cil-dpo@inra.fr ou par courrier à :

INRA
24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan cedex - France

Dernière mise à jour : Mai 2018

Menu Logo Principal

Érosion Torrentielle, Neige et Avalanches

Soutenance de thèse de Rémi Chassagne

Jeudi 19 Novembre - INRAE Centre de Lyon-Grenoble Auvergne-Rhône-Alpes

Soutenance de thèse de Rémi Chassagne
Modélisation discrète et continue du tri granulométrique : application au transport par charriage

Soutenance

La soutenance sera tenue en anglais le jeudi 19/11/2020 à 14h par visioconférence (lien d'accès), devant le jury composé de :

  • M. Eric Lajeunesse, Rapporteur - Physicien, CNAP IPGP
  • M. Pierre-Yves Lagrée, Rapporteur - Directeur de Recherche CNRS, Institut Jean le Rond d'Alembert Université Pierre et Marie Curie
  • M. Olivier Pouliquen, Examinateur - Directeur de Recherche CNRS, IUSTI, Université Aix Marseille
  • M. Nico Gray, Examinateur - Professor of applied Mathematics, University of Manchester
  • M. Philippe Frey, Directeur de thèse - Chercheur HdR ICPEF,  Université Grenoble Alpes, INRAE Lyon-Grenoble, ETNA
  • M. Julien Chauchat, Co-directeur de thèse - Maître de Conférence HdR, LEGI, Université Grenoble Alpes
  • M. Raphaël Maurin, Encadrant de thèse - Maître de Conférence, IMFT, Toulouse INP

Résumé

Modélisation discrète et continue du tri granulométrique : application au transport par charriage

La compréhension du tri granulométrique des particules est un enjeu majeur pour l’étude des évolutions morphologiques des rivières de montagne. La prédiction des flux de transport reste difficile avec des écarts de plusieurs ordres de grandeurs entre les valeurs prédites et mesurées. L’une des raisons principales de cette difficulté est la ségrégation, phénomène granulaire de tri granulométrique des particules constituant le lit sédimentaire. La ségrégation est donc un phénomène à l’échelle du grain ayant un impact à l’échelle morphologique.

Cette thèse présente une étude numérique de la ségrégation en tant que phénomène granulaire dans le cas du charriage et son impact sur le transport sédimentaire. Un modèle aux éléments discrets (DEM) couplé à un modèle fluide turbulent unidimensionnel est utilisé. A l’instant initial, des petites particules sont déposées au dessus de particules plus grosses. Le fluide s’écoule par gravité et transporte les particules du lit sédimentaire. Cette configuration, proche d’un lit érodable, est caractérisée dans la profondeur par des profils exponentiellement décroissant de la vitesse particulaire, du taux de cisaillement et du nombre inertiel et présente une phénoménologie de ségrégation particulière. Les petites particules s’infiltrent en couche, sous forme d’onde progressive, dont la vitesse est contrôlée par le nombre inertiel en bas de la couche. On observe aussi que la vitesse de ségrégation est dépendante de la concentration locale en petites particules et du ratio de taille. Le problème de ségrégation est ensuite analysé à partir d’un modèle d’advection-diffusion. Avec un coefficient d’advection proportionnel au nombre inertiel, le modèle continu reproduit parfaitement la dynamique de la phase des petites particules. Enfin on démontre que pour reproduire l’onde progressive observée dans les simulations DEM, le coefficient de diffusion doit avoir la même dépendance avec le nombre inertiel que le coefficient d’advection.

Très récemment, un nouveau modèle d’advection-diffusion a été proposé dans la littérature à partir de forces inter-particulaires, notamment une force de portance (ou force de ségrégation) et de traînée, apportant de nouvelles paramétrisations physiques aux coefficients d’advection et de diffusion. Ce nouveau modèle est analysé ici dans la configuration du charriage. La dépendance en nombre inertiel, observée dans les résultats DEM, peut être retrouvée à partir de ces nouvelles paramétrisations. Pour reproduire quantitativement les simulations DEM, de nouvelles dépendances en nombre inertiel et concentration en petites particules sont proposées pour la force de ségrégation et le coefficient de traînée.

Enfin, l’impact de la ségrégation sur le transport sédimentaire est étudié en s’intéressant à la mobilité d’un lit bi-disperse déjà ségrégé. Les grosses particules sont placées au dessus des petites et on observe que, pour la même contrainte fluide et pour le même état granulaire de surface, le transport est plus élevé dans le cas bi-disperse que dans le cas mono-disperse. Pour la gamme de ratio de taille étudié (r<4), on montre que l’augmentation de mobilité n’est pas un effet de rugosité mais un effet rhéologique. À partir d’une analyse dans le cadre de la rhéologie mu(I), il est démontré que les petites particules en profondeur sont plus mobiles que les grosses particules, jouant le rôle d’un tapis roulant pour les grosses particules de surface et augmentant ainsi la mobilité globale du lit sédimentaire. Basé sur des arguments rhéologiques, un modèle simple de prédiction de l’augmentation du flux sédimentaire est proposé, reproduisant correctement les résultats DEM pour une large gamme de nombre de Shields et pour des ratio de taille inférieurs à 4. Les résultats du modèle sont exploités pour identifier quatre régimes de transport différent selon les mécanismes responsables de la mobilité des petites particules.

Ce travail représente une avancée importante dans la compréhension de la ségrégation en transport sédimentaire par charriage et questionne notre compréhension des milieux granulaires bi-disperses encore peu étudiés. Il représente aussi une première étape dans le processus de changement d’échelle vers l’échelle morphologique par le biais de modèles continus.

Abstract

Discrete and continuum modelling of grain size segregation: application to bedload transport

Understanding particle size segregation is one of the great challenge in fluvial geomorphology. It is still notoriously difficult to predict sediment transport more accurately than within one order of magnitude. One of the main origin of this difficulty is particle size segregation, a granular process of particle sorting in the sediment bed. Size segregation is therefore a grain scale process impacting the morphological scale.
This PhD presents a numerical study of size segregation as a granular process during bedload transport. A coupled fluid discrete element method (DEM) is used to study the infiltration  of small particles in a large particle bed. This configuration, close to granular flows on erodible beds, is characterized by a particle velocity profile, a shear rate profile and an inertial number profile exponentially decreasing into the bed. It presents a particular segregation phenomenology with small particles infiltrating the bed as a travelling wave, the velocity being controlled by the inertial number at the bottom of the layer. The segregation velocity is observed dependent on the local small particle concentrations and on the size ratio. The segregation problem is also analyzed with an advection diffusion model. With advection and diffusion coefficients both proportional to the inertial number, the continuum model perfectly reproduces the dynamics observed in the DEM results.
Very recently, a new segregation advection diffusion model has been derived based on particle scale forces, in particular a granular buoyancy force (or segregation force) and an inter-particle drag force. This provides new physically based parametrisations for the advection and diffusion coefficients. This new model is analysed in the bedload configuration, and reproduces qualitatively the DEM results. To improve the model, new dependencies on the inertial number and small particle concentration are proposed for the segregation and drag forces.
Finally, the impact of size segregation on sediment transport is studied through the mobility of bidisperse already segregated particle beds. Large particles are placed above small ones, and it is observed that, in the same fluid and surface bed conditions, the transport rate is higher in the bidisperse configuration than in the monodisperse one. For the range of studied size ratio (r<4), it is showed that it is not a rugosity but a granular effect. This is analyzed within the framework of the mu(I) rheology and it is demonstrated that the buried small particles are more mobile than larger particles and play the role of a conveyor belt for the large particles at the surface. Based on rheological arguments, a simple predictive model for the additional transport in the bidisperse case is proposed, which reproduces quite well the DEM results for a large range of Shields numbers and for size ratios smaller than 4. The results of the model were used to identify four different transport regimes of bidisperse mixtures, depending on the mechanisms responsible for the mobility of the small particles.
This work represents an important improvement in the understanding of size segregation during bedload transport and questions our understanding of bidisperse granular media, which have not been much studied. It also represents a first step in an upscaling process towards the morphological scale through continuum models.